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Abstract—The characteristics of organic light-emitting diodes
depend critically on the arrangement and choice of the constituent
organic layers. Diodes constructed using poly(vinylcarbazole)
doped with phosphorescent fac tris(2-phenylpyridine) iridium
(III) [Ir(ppy)

3
] as the polymer hole-transport layers and alu-

minum (III) bis(2-methyl-8-quinolinato) 4-phenylphenolate as
hole-blocking and electron-transport layers were investigated. The
peak efficiencies of the diodes were sensitive to the concentration
of Ir(ppy)

3
. With an optimal 2 wt% concentration, an effective

external quantum efficiency of 10% photons/electron, a luminance
power efficiency of 7.3 lm/W, and a low turn-on voltage of 6 V
were obtained.

Index Terms—BAlq, electro-phosphorescence, polymer organic
light-emitting diode.

I. INTRODUCTION

RECENTLY, nearly 100% [1]–[3] internal emission
quantum efficiency has been obtained by harvesting both

singlet and triplet excitons in organic light-emitting diodes
(OLEDs) doped with phosphorescent emitters containing
heavy metals. The strong spin-orbit coupling of a heavy metal
enhances intersystem crossing and mixes the singlet and triplet
states. Effective external quantum efficiency of 19%
photons/electron and luminance power efficiency of
70 lm/W have been demonstrated in OLEDs based on small
molecures [2], [3]. An important advantage of OLEDs based on
polymers [4] over those based on small molecules is their com-
patibility with solution processing. This potentially allows a
lower cost of production using room temperature spin-coating,
screen-printing, or ink-jet printing techniques.

Phosphorescent emission dopants have also been ap-
plied to polymer-based OLEDs [5]–[14]. Using a single
100–200-nm-thick tris[9,9-dihexyl-2-(pyridinyl- ) flu-
orene] iridium(III) doped blend of hole-transporting
poly(9-vinylcarbazole) (PVK) and electron-transporting
2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole, Gong
et al. [12] demonstrated a high of 10% photons/electron
at an optimal doping concentration of 0.3 wt%. However,
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Fig. 1. (a) Normalized PL spectra of PVK doped with various concentrations
of Ir(ppy) excited at an intensity of 10 mJ/cm . (b) Normalized PL spectra of
PVK doped with 2 wt% Ir(ppy) excited at various intensity.

the turn-on voltage was relatively high, resulting in a low
of 2.5 lm/W. Using a double-layer structure of PVK doped
with fac tris(2-phenylpyridine) iridium(III)— as the
hole-transport layer and 1,3-bis[(4-tert-butylphenyl)-1,3,4-oxa-
diazolyl] phenylene as the electron-transport layer, Yang et al.
[13] reported a higher of 5.8 lm/W but a lower of
7.5% photons/electron at a doping concentration of 6.8 wt%.
Adding an extra hole-blocking layer, Vaeth et al. [14] recently
reported a high of 8.5% in a relatively more complex
triple-layer device.

Since the performance of an OLED is sensitive to both
the arrangement and the choice of the constituent organic
layers, further improvement is quite possible. In this paper,
the performance of simple double-layer diodes, consisting
of poly(ethylene dioxythiophene):poly(styrene sulfonic acid)
(PEDOT:PSS) as the hole-injection layer, doped PVK
as emitting layers and aluminum(III) bis(2-methyl-8-quinoli-
nato)4-phenylphenolate (BAlq) as electronic transport layers
is reported. It was determined that BAlq behaved as an ef-
fective hole-blocking electron-transport layer. At an optimal

concentration of 2 wt%, an similar to the 10%
photons/electron reported by Gong et al. and a high of
7.3 lm/W have been obtained.
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Fig. 2. EL intensity (L), current density (J), voltage (V ) characteristics of
Type B diodes with various Ir(ppy) concentrations.

Fig. 3. Dependence of the EL spectra of Type B diodes on Ir(ppy)
concentration. Inset is the corresponding dependence of the current efficiency
on Ir(ppy) concentration.

II. DIODE FABRICATION

Glass coated with 70-nm indium-tin oxide (ITO) with a
sheet resistance of 30 was used as the starting substrates.
After a sequence of cleaning steps consisting of a 50 C
ultrasonic detergent soak for 30 min, deionized water spray for
10 min, ultrasonic deionized water soak for 30 min, 110 C
oven bake dry for 1–2 h and ultraviolet/ozone illumination for
10 min, PEDOT:PSS in water and doped PVK in
trichloromethane (4 mg/mL) were sequentially spin coated.
After each coating, the solvent was baked out in a vacuum
oven at 54 C for 2 h. The final thickness of PEDOT:PSS
and -doped PVK were 70 and 60 nm, respectively.
Electron-transporting BAlq or tris-(8-hydroxyquinolinato)

Fig. 4. (a) Current density (J), voltage (V ) characteristics of Types B and
C diodes with 5 wt% Ir(ppy) concentration. Inset is the dependence of
the current efficiency and power efficiency of a Type C diode on Ir(ppy)
concentration. (b) Corresponding normalized EL spectra of Type C diodes.

aluminum was then deposited in a vacuum thermal
evaporation chamber with a base pressure of 1 torr. The
cathode, consisting of 1-nm lithium fluoride (LiF) and 150-nm
aluminum (Al) [15], was subsequently evaporated through
a shadow mask. The layer thickness during evaporation was
measured in situ using a quartz crystal monitor. A Tencor P-10
surface profiler was used to determine the thickness of the
spin-coated films.

Photo-luminance (PL) and electro-luminance (EL) spectra
were measured using a PR650 photospectrometer. The PL
was excited using the 337-nm line of a He-Cd laser, through a
diffusing lens.

For comparison, two types of 4-mm-diameter OLEDs were
fabricated using a set of shadow masks. These are as follows:

1) Type “B”: ITO(75 nm)/PEDOT:PSS(70 m)/PVK:
(60 nm)/ (50 nm)/LiF(1nm)/Al (150 nm).

2) Type “C”: ITO/PEDOT:PSS/PVK: (50
nm)/LiF/Al.
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TABLE I
COMPARISON OF PERFORMANCE OF TYPES B AND C OLEDS

Unless indicated otherwise, the thickness of the constituent
layers in a Type C diode are the same as those in a Type B
diode.

III. RESULTS AND DISCUSSION

Excited at an intensity of 10 mJ cm , the normalized PL
spectra of PVK doped with various concentrations of
are shown in Fig. 1(a). PL peaks are observed at 400 nm for
PVK fluorescence and at 516 nm for phosphores-
cence. At low concentrations, the transfer of excitons
from PVK to is less efficient because of the larger
average separation between an excited site on the PVK host
and an dopant. Therefore, emission near 400 nm
is observed, attributed to the PVK host. The average separa-
tion reduces and the exciton transfer efficiency improves with
increasing concentration, leading to almost complete
disappearance of the emission near 400 nm at concentration
above 10 wt% at this excitation intensity. The PL spectra of PVK
doped with 2 wt% and excited at various intensities is
shown in Fig. 1(b). It can be seen that the PL peak at 400 nm
from the PVK host increases with excitation intensity. Below an
excitation intensity of 1.3 mJ/m , host fluorescence could not
be observed. As the excitation intensity is increased and more
excitons are generated on the host, a proportionally more se-
vere incomplete transfer of these excitions to the phosphores-
cent dopants results in increased host florescence and reduced
PL efficiency [16].

The EL intensity , current density , and voltage
characteristics of Type B diodes doped with various
concentrations are shown in Fig. 2. For the - characteristics,
only the current range up to the peak of each diode is shown.
The driving voltage at A/m for each diode is shown
in Table I. It can be seen that the driving voltage initially in-
creases with concentration, peaks at 2 wt%, then de-
creases with further increase in concentration. The dependence
of the effective current efficiency, defined as the slope of the

- characteristics, on concentration is extracted and
shown in the inset of Fig. 3. It is clear that a maximum is also
obtained at 2 wt%.

The EL spectra of Type B diodes doped with various concen-
trations of and driven at A/m are shown in

Fig. 3. The most distinguishing feature differentiating the EL
from the PL spectra [Fig. 1(a)] is the absence of any PVK-in-
duced emission near 400 nm, irrespective of the con-
centration. All EL spectra are quite similar, being dominated by

-induced peaks near 516 nm. A further contrast with
the PL spectra is the appearance of a blue emission shoulder at

460 nm in diodes with concentration below 2 wt%.
It is clear this emission originates from BAlq.

With BAlq replaced by as the electron-transport layers
in Type C diodes, similar - characteristics [Fig. 4(a)] but
distinct EL spectra [Fig. 4(b)] with -induced emission
at 540 nm are obtained even in diodes with a high 5 wt%

concentration. The effective current and power effi-
ciencies of Type C diodes with various concentration
are shown in the inset of Fig. 4(a). The effective current
efficiency changes little with the concentration. The
driving voltage at A/m for each diode is also shown
in Table I.

These observations can be explained with the following
transport/emission mechanism [17]. Holes and electrons drift
preferably and respectively through the -doped PVK
and BAlq (or ). Emission is initiated in regions where
the two populations overlap. At low concentration,
both the fraction of holes trapped and the reduction in effective
hole mobility are low. Consequently, holes are transported
mainly through the PVK host. Blocked by neither BAlq
nor , a finite amount of holes “leaks” into and initiates
emission in BAlq [Fig. 5(a)] or . As the con-
centration is increased and the average separation among the

molecules is reduced, direct -to-
hole hopping comes into play. Eventually it becomes the
dominant transport mechanism, the effective hole mobility
increases, and thus results in a reduction in the driving voltage
(Table I). Similar concentration-induced switching from host-
to dopant-based transport has been invoked to explain the
behavior of OLEDs doped with fluorescent dopants [18]. At

concentrations above 2 wt%, BAlq-induced blue EL
emission is no longer observed [Fig. 5(b)]. Therefore, BAlq is
an effective hole block for -based hole transport. Even
at a high concentration of 5 wt% , holes transported
on are injected upon reaching a nonblocking
interface, thus initiating emission in . These observations
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Fig. 5. (a) EL spectra of Type B diodes with (a) 2 wt% and (b) 5 wt% Ir(ppy)
concentration at different current density.

Fig. 6. Relative alignment of the characteristic energy levels of PVK,
Ir(ppy) , BAlq, and Alq .

Fig. 7. Dependence of the effective external quantum and luminance power
efficiencies on Ir(ppy) concentration of Type B diode.

Fig. 8. Dependence of the effective external quantum and luminance power
efficiencies on current density of a Type B diode with 2 wt% [Ir(ppy)]
concentration.

are compatible with the alignment of the energy levels of the
highest occupied molecular orbitals (HOMO) shown in Fig. 6
[19]. The dependence of the EL spectra of the Type B diodes
on current density further verifies this mechanism.

The dependence of both peak and on con-
centration is shown in Fig. 7. Both efficiencies first increase,
peak at 2 wt%, then gradually decrease with increasing

concentration. The reduction in the efficiencies be-
yond the optimal concentration has been attributed to aggregate
quenching [12].

The dependence of and on the current density of a
diode with an optimal 2 wt% concentration is shown
in Fig. 8. The peak is 10% photons/electron (or

cd/m at A/m ). The peak is 7.3 lm/W (or
cd/m at A/m and a driving voltage of 14 V). The

turn-on voltage of 6 V (Fig. 2) is significantly lower than those
of the single layer device [12] or diodes with 2,9-dimethyl-4,7-
dipheny-1–10-phenanthroline (BCP) hole-blocking layers [19],
[20]. The peak luminance is 9501 cd/m at 18 V. The corre-
sponding is 336 A/m .

IV. CONCLUSION

The performance of OLEDs constructed with doped
PVK and BAlq as the electron-transport layers has been char-
acterized. The BAlq functions additionally as a hole-blocking
layer for holes transported on but not for those trans-
ported on PVK. The peak efficiency of the diode was sensitive
to the concentration of . At 2 wt% concentration, a low
turn-on voltage of 6 V, an effective peak external quantum effi-
ciency of 10% photons/electron and a peak power efficiency of
7.3 lm/W have been measured.
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