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3 Ã 3 Matrix for unitary optical systems
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We introduce a 3 3 3 matrix for the study of unitary optical systems. This 3 3 3 matrix is a submatrix of the
4 3 4 Mueller matrix. The elements of this 3 3 3 matrix are real, and thus complex-number calculations can
be avoided. The 3 3 3 matrix is useful for illustrating the polarization state of an optical system. One can
also use it to derive the conditions for linear and circular polarization output for a general optical system.
New characterization methods for unitary optical systems are introduced. It is shown that the trajectory of
the Stokes vector on a Poincaré sphere is either a circle or an ellipse as the optical system or input polarizer is
rotated. One can use this characteristic circle or ellipse to measure the equivalent optical retardation and
rotation of any lossless optical system. © 2001 Optical Society of America
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1. INTRODUCTION
Unitary optical systems are systems that are lossless and
do not alter the intensity of the input light; they include
polarization rotators, retardation wave plates, and
twisted nematic liquid-crystal layers. The change in po-
larization through a unitary optical system is convention-
ally handled by 2 3 2 Jones calculus.1 The elements of
the Jones matrix are in general complex. The Jones vec-
tor is a complex 2-vector that describes the polarization
state of the electric field. In general, three numbers (the
complex amplitude of the electric fields in the x and in the
y directions and their relative phase) are needed for defi-
nition of a polarization state for a completely polarized
light beam.

Any lossless linear optical system can be represented
by a unitary Jones matrix. It has been pointed out that
all unitary matrices can be represented as a combination
of a polarization rotator and a retardation plate.2 Simon
and Makunda3 and Bagini et al.4 invented several devices
(‘‘gadgets’’) for modeling polarization optics of unitary sys-
tems. Most of these studies made use of the 2 3 2 Jones
matrix formulation or the SU(2) transformations. In
particular, the Jones matrix of a liquid-crystal cell has
been studied extensively.5 Although this Jones calculus
has been applied successfully to many optical systems, it
suffers from the drawbacks that it is not directly ame-
nable to physical interpretation vis-à-vis the Poincaré
sphere and that calculations that involve complex num-
bers are needed.

The 2 3 2 Jones matrix and Jones vector can be ex-
tended to a 4 3 4 Mueller matrix and a 4-Stokes vector.6,7

A Stokes vector is a generalized description of the polar-
ization state of light that allows for absorption as well, so
the vector need not have unity length. Partial polariza-
tion can also be accommodated. A Stokes vector can be
visualized as a vector in the Poincaré sphere and is quite
a useful concept in physical interpretations. In this pa-
per we introduce the 3 3 3 matrix calculus for
polarization-state calculations for the special case of uni-
tary optical systems. It is suitable for optical systems for
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which there is no optical absorption and the input optical
element is always a linear polarizer, so that the light is
always totally polarized. This 3 3 3 matrix can be con-
sidered a subset of the 4 3 4 Mueller matrix confined to
unitary systems, and its use is more convenient. Simi-
larly to the 4 3 4 case, the 3-Stokes vector and this
3 3 3 matrix also have real matrix elements. Moreover,
the new Stokes vectors that describe the polarization
states of light can also be clearly represented on the Poin-
caré sphere, and, in particular, as projections onto the
S1 –S2 plane. They are homomorphic to the SO(3) group.

Similarly to 2 3 2 and 4 3 4 calculus, the final output
intensity of light in the 3 3 3 calculus is obtained by ex-
amining the final Stokes vector. In the following discus-
sions, formulation of a 3 3 3 matrix for both transmis-
sion and reflection of unitary optical systems will be
discussed. We demonstrate the usefulness of this 3 3 3
matrix for polarization-state manipulation in addition to
intensity calculations by deriving some important
polarization-state conversion formulas. Specific condi-
tions for linearly and circularly polarized output light are
derived.

We also introduce the interesting concept of the char-
acteristic circle and the characteristic ellipse for any uni-
tary optical system. Application of the new matrix meth-
ods to characterization of optical systems is also
introduced. These new characterization methods are ap-
plicable to all unitary optical systems and in particular to
twisted nematic liquid-crystal cells.

2. FORMULATION OF THE 3 Ã 3 MATRIX
It was shown previously6,7 that, for every unitary Jones
matrix MJ , there is a 4 3 4 Mueller matrix counterpart
MM that can be obtained through the following transfor-
mation:

MM 5 T • ~M J ^ M J* ! • T21, (1)

where
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T 5 F 1 0 0 0

1 0 0 2 1

0 1 1 0

0 i 2 i 0
G , (2)

and the direct product of two 2 3 2 Jones matrices is
given by

MJ ^ MJ*Fm11m11* m11m12* m12m11* m12m12*

m11m21* m11m22* m12m21* m12m22*

m21m11* m21m12* m22m11* m22m12*

m21m21* m21m22* m22m21* m22m22*
G ,

(3)

where mij are the matrix elements of Jones matrix MJ .
It can be shown that the most general unitary 2 3 2

matrix can be written in the form

MJ 5 Fa 1 ib 2 c 1 id

c 1 id a 2 ib G , (4)

where a, b, c, and d are real numbers and a2 1 b2 1 c2

1 d2 5 1. Thus there are three independent variables
for the Jones matrix of a unitary optical system.

Physically, the most general unitary Jones matrix is
that of a combination of a polarization rotator and a re-
tardation plate, which is also the Jones matrix of a liquid-
crystal (LC) cell. In this paper we are interested in ap-
plying this 3 3 3 matrix to LC cells. Therefore, in the
following, we can discuss the general unitary matrix in
the language of a LC cell for which there is a twist angle
f and the retardation value of the LC cell is given by
d 5 pdDn/l, where d is the LC cell’s thickness and Dn is
the value of the LC’s birefringence. For a general twisted
nematic LC cell whose input director is parallel to the x
axis, the Jones matrix elements are given by8,9

a 5 cos b cos f 1
f

b
sin b sin f,

b 5 2
d

b
sin b cos f,

c 5 cos b sin f 2
f

b
sin b cos f,

d 5 2
d

b
sin b sin f, (5)

where b2 5 f 2 1 d 2. Notice that this is just a special
case of the general matrix MJ . There are only two inde-
pendent variables in Eqs. (5). In general, the input di-

MM 5 F 1 0

0 1 2 2~c2 1 d2!

0 2~ac 1 bd !

0 2~ad 2 bc !
rector of the LC cell can make an angle a with the x axis.
This provides the third independent variable.

Going back to the general a, b, c, d representation, after
some algebra, Mueller matrix MM for a general unitary
optical system can be found to be

The 4-Stokes vector has the standard form

S 5 S S0

S1

S2

S3

D , (7)

where S0 always equals 1 for completely polarized light.
Now, for the unitary optical system, the first column of
the Mueller matrix is always (1 0 0 0)T, and the
first row is always (1 0 0 0). Moreover, S0 in the
Stokes vector is always unity. Thus we can ignore the
first row and the first column and simplify matrix MM as

MM 5 F A B C

D E F

G H K
G . (8)

We have to make the corresponding simplification of the
Stokes vector by ignoring the first element of the 4-Stokes
vector. Thus the new Stokes vector is

S 5 S S1

S2

S3

D . (9)

This is the basis of the new 3 3 3 matrix calculus. It is
less tedious to treat this 3 3 3 calculus than the 4 3 4
calculus. As in the case of the 4-Stokes vector, the new
3-Stokes vector comprises simply Cartesian coordinates
of a unity radius Poincaré sphere. Thus light polarized
linearly at a to the x axis is represented by
(cos 2a sin 2a 0)T, and circularly polarized light is rep-
resented by (0 0 61)T.

Note that all elements of the 3 3 3 matrix and the
3 3 1 Stokes vector are real. The forms of some impor-
tant 3 3 3 matrices are given here. The 3 3 3 matrix of
a wave plate with a retardation of 2G and the slow axis
along the x axis is

WP~G! 5 F 1 0 0

0 cos 2G 2sin 2G

0 sin 2G cos 2G
G . (10)

For a polarization rotator that rotates the polarization of
an incoming wave by an angle u, the 3 3 3 matrix is

0 0

~bd 2 ac ! 22~ad 1 bc !

2~b2 1 c2! 2~ab 2 cd !

2~ab 1 cd ! 1 2 2~b2 1 d2!

G 5 F 1 0 0 0

0 A B C

0 D E F

0 G H K
G . (6)
2

1 2

2
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R~u! 5 F cos 2u 2sin 2u 0

sin 2u cos 2u 0

0 0 1
G . (11)

We observed that the 3 3 3 matrix of a wave plate and
that of a rotator are, respectively, a three-dimensional ro-
tation matrix along the S1 and S3 axes. In fact, this
should not be surprising if one recognizes that the unitary
group SU(2) and the rotation group SO(3) are
homomorphic.10,11 One can equate the 2 3 2 Jones ma-
trix to the SU(2) group and the 3 3 3 matrix to the SO(3)
rotational group. Finally, it should be noted that the po-
larizer matrix is not unitary and that it does not have a
3 3 3 matrix representation.

3. CALCULUS OF THE 3 Ã 3 MATRIX
The 3-Stokes vectors are transformed by the 3 3 3 ma-
trix in the usual manner:

Sout 5 MMSin . (12)

Unlike for the Jones vector, the transmission and reflec-
tion of an optical system represented by Figs. 1 and 2 can-
not be calculated from the magnitude of the Stokes vector.
For a 4-Stokes vector, the magnitude is simply the first el-
ement of the vector. It can be shown, after some algebra,
that in the 3 3 3 formulation the transmission of light for
a unitary optical system between two polarizers at angles
a and g can be written as

T 5 0.5 1 0.5~cos 2g sin 2g 0 ! • M • S cos 2a
sin 2a

0
D ,

(13)

where M 5 MnMn21 ...M2M1 . The Mi element here can
be a wave plate, a polarization rotator, or an arbitrary
twisted nematic LC cell. In Eq. (13), (cos 2a sin 2a 0)T

represents the input polarizer at angle a, and
(cos 2g sin 2g 0) represents the output polarizer at
angle g relative to the x axis.

The maximum transmission in Eq. (13) is unity when
the final output polarization is linear at angle g. Equa-
tion (13) can be derived by using the 4 3 4 Mueller ma-
trix of a polarizer9:

Pol~g! 5
1

2 F 1 cos 2g sin 2g 0

cos 2g cos2 2g cos 2g sin 2g 0

sin 2g cos 2g sin 2g sin2 2g 0

0 0 0 0
G ,

(14)
where the first element of the 4-Stokes vector represents
the light intensity.

Similarly, it can be shown that, for a reflective unitary
optical system as shown in Fig. 2, the reflectance is given
by

R 5 0.5 1 0.5~cos 2a sin 2a 0 ! • MPM • S cos 2a
sin 2a

0
D ,

(15)
where MP is given by
Mp 5 F M11 M21 2M31

M12 M22 2M32

2M13 2M23 M33

G . (16)

Equation (15) is obtained when we consider that the
Jones matrix of a unitary optical element for a reversed
light path is the transpose of the forward light path.13 In
fact, MP here is the Mueller matrix counterpart of the
transpose of Jones matrix MJ . It is important to note
that the transpose of a Mueller matrix does not corre-
spond to the transpose of its Jones matrix counterpart.
Matrix MP can also be written in the form14,15

MP 5 OMTO21 (17)

where MT is the transpose of M and O is

O 5 F 1 0 0

0 1 0

0 0 21
G . (18)

To obtain Eq. (16) one obtains the transpose of MJ by just
reversing the sign of c in Eq. (5). Therefore reversing the
sign of c in Eq. (5) gives the MJ

T Mueller matrix counter-
part MP.

The above equations represent calculations of optical
transmission and reflection through a unitary optical sys-
tem by use of the new 3 3 3 Mueller calculus. It should
be emphasized that all the matrix and vector elements
are real. The demand on computation time is corre-
spondingly diminished.

4. POLARIZATION CONVERSION
The state of polarization for any polarized light can be il-
lustrated easily in a Poincaré sphere representation.12

The close relationship between the 3 3 3 calculus and
the state of polarization is remarkable. In this section
we examine the induced change of polarization state by a
general unitary optical system, using the 3 3 3 calculus

Fig. 1. Unitary optical system between two polarizers (Pols).
All angles are relative to the x axis. Mi are arbitrary unitary
optical elements.

Fig. 2. Reflective optical system with unitary optical elements
Mi and a single front polarizer.



It is of interest to note that the equations for calculating
input polarizer angle a for the LP2 and the CP modes are
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developed above. The most-wanted output states are the
linear and circular polarization states. If we want to
have a linear polarization output for a particular unitary
optical system, then

S cos 2g
sin 2g

0
D 5 F A B C

D E F

G H K
G S cos 2a

sin 2a
0

D . (19)

Therefore the condition for linear output is

G cos 2a 1 H sin 2a 5 0. (20)

Equation (20) has two solutions:

G 5 H 5 0, (21)

tan 2a 5 2G/H. (22)

Equations (21) and (22) are the first and the second con-
ditions for linear output, termed the LP1 and the LP2 so-
lutions, respectively. It is of interest to note that the LP1
solution is independent of input linear polarization angle
a and exists only for special unitary optical systems. It
may not exist for all systems. However, the LP2 solution
always exists in the sense that one can always find a in
terms of the optical system parameters. Therefore we
have the following theorems:

Theorem 1: For any unitary optical system, if the in-
put light is linearly polarized there always exists an ori-
entation of the system such that the output is also lin-
early polarized.6 The orientation of the system is given
by Eq. (22).

Theorem 2: There are some unitary optical systems
such that a linearly polarized input results in a linearly
polarized output, independently of the orientation of the
optical systems. The parameters for those systems are
given by Eq. (21).

These theorems are valid for all unitary (lossless) opti-
cal systems. In particular, they are true for LC cells.
For the LC cell the physical interpretation of the above
theorems is quite interesting. They are discussed fur-
ther in Section 5 in terms of equivalence to a retardation
plate–polarization rotator combination.

If the input is linearly polarized and a circular output
is wanted, we must have
S 0
0

61
D 5 F A B C

D E F

G H K
G S cos 2a

sin 2a
0

D (23)

or

F A D G

B E H

C F K
G S 0

0
61

D 5 S cos 2a
sin 2a

0
D . (24)

We obtained Eq. (24) by using the property that the trans-
pose of MM is also the inverse of itself, which is true for
any unitary matrix.16 Thus the following criteria for a
circular polarization output can be obtained:

tan 2a 5 H/G, (25)

K 5 0. (26)

Equations (25) and (26) are the conditions for a circular
polarization output that is termed the CP solution.
Therefore, for CP output, K must be zero and that the in-
put polarizer must be at angle a according to Eq. (25).
Since K is a parameter related to the optical system only,
Eq. (26) is a useful check on whether an optical system
can produce a CP output. Thus we have theorem 3:

Theorem 3: There are some conditions on the param-
eters of a unitary optical system such that a linearly po-
larized input will result in a circularly polarized output.
The conditions for the optical parameters are given by
Eqs. (25) and (26).

Note that the LP2 solution always exists for any uni-
tary system. LP1 and CP solutions require special con-
ditions on the parameters of the system for these solu-
tions to occur. Finally, we observe that, for deducing the
linear polarization or CP output condition, only the third
row of the resultant matrix M, (G H K), is needed. The
results obtained here give useful insights into the output
polarization of unitary optical systems. They can also
help in the development of new optical systems for polar-
ization manipulation, particularly for LC cells.

Table 1 is a summary of the polarization-conversion re-
quirements given in both Mueller and Jones parameters.
Table 1. Conditions for Obtaining Linearly or Circularly Polarized Output for General
Mueller and Jones Calculus

Output

Calculus

Mueller Jones

Linear polarization
LP1 G 5 H 5 0 a2 1 c2 5 1,

0

LP2 tan 2aLP2 5 2 G/H tan 2aLP2 5
ad 2 bc

ab 1 cd
Circular polarization K50 a2 1 c2 5 1/2

tan 2aCP 5 H/G tan 2aLP2 5
ab 1 cd

bc 2 ad



2142 J. Opt. Soc. Am. A/Vol. 18, No. 9 /September 2001 S. T. Tang and H. S. Kwok
quite similar. This fact suggests that if we have a CP
output obtained by solving Eq. (25), then, by rotating the
linear input angle (or equivalently the unitary optical sys-
tem) by an angle of 645°, we get a linear polarization out-
put of the LP2 type. But, of course, for the CP mode, an

Fig. 3. Solution curves of Eq. (27) are circles in f–d space.
Circles correspond to the order of solution; the smallest circle is
for N 5 1, and so on.

Fig. 4. LP2 solutions span the whole f–d space. The curves
shown are the first two orders of solutions with different input
polarizer angle a. The input polarizer angle begins at 10°–80°
from left to right.

Fig. 5. CP solutions with Eq. (29) as a is varied. Curves are for
different orders of the solution. No solution could be obtained
for f . d.

Fig. 6. For the CP solutions, one can plot the input polarizer
angle a as a function of the twist angle. The three curves here
represent the three curves in Fig. 5.
additional condition for the relation between a and c (or
K) is required.

Specializing to the case of a LC cell, using the specific
formulas for a, b, c, and d in Eq. (5), we can derive the
polarization-conversion equations to be

for LP1

sin b 5 0, (27)

for LP2

tan 2aLP2 5 f/b tan b, (28)

for CP

d

b
sin b 5

1

A2
, (29)

tan 2aCP 5 2b/f cot b. (30)

The output linear polarization angles g for the LP1 and
LP2 solutions are determined easily to be f 1 a and
f 2 a, respectively.

Note that Eqs. (5) were obtained assuming that the in-
put director of the LC cell was along the x axis. The po-
larizer angle is a. If we regard the polarizer as fixed,
then a can be treated as the rotation angle of the LC cell.
Thus (a, f, d) are the three required parameters for the
LC cell. (The 3 3 3 matrix needs three independent vari-
ables, in general.)

Equations (27)–(30) are useful for both LC cell design
and measurement. The solution curves of the
polarization-conversion equations for the general twisted
nematic LC cell are shown in Figs. 3–6. Details of the
application of these solutions are found in our previous
publications.17–19 Basically, they give the conditions in
the LC cell for the LP1, LP2, and CP solutions to exist.
For the LP1 and LP2 solutions, since they require only
one condition on the optical parameters, the solution
spaces are therefore surfaces in the (a, f, d) parameter
space. For the CP solution, since there are two condi-
tions imposed on the optical system the solution space is
therefore a curve in the same (a, f, d) parameter space.
Figures 3–6 can be treated as representations of the
three-dimensional parameter space on a two-dimensional
diagram. But LP2 solutions are unique in the sense that
they always exist for any optical system, by a rotation of
the entire optical system (Theorem one). Finally, we note
that the results in this section are similar to the state-of-
polarization analysis of Zhuang et al., who used the
4 3 4 matrix.20 However, the analysis of the polariza-
tion conversion in terms of the LP1, LP2, and CP solu-
tions is much more elegant.

5. CHARACTERIZATION OF A UNITARY
OPTICAL SYSTEM: EQUIVALENCE
THEOREM
There are several equivalent theorems for unitary optical
systems. Since the most general unitary matrix contains
three independent parameters, any combination of optical
elements that allows three independent parameters can
potentially be an optical equivalent. In particular, it has
been shown that any unitary optical system can be re-
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placed by the combination of a retardation wave plate and
a polarization rotator.2 It has also been proved that it is
possible to represent an arbitrary unitary optical system
by two quarter-wave plates and a half-wave plate (the
Simon–Mukunda gadget).3,4 Another potential equiva-
lence is that of a combination of a retardation plate and a
half-wave plate or a quarter-wave plate. Here we discuss
in detail the equivalence theorem with the polarization
rotator and the wave plate, since it is more closely related
to a LC layer.

For any unitary matrix M,

M 5 R~x!WP~G, c!, (31)

where x is the rotation angle induced by the rotator and G
and c are the phase retardation and the orientation, re-
spectively, of the c axis of the equivalent wave plate. The
order of the matrices in Eq. (31) is not important as long
as the order is consistent. If the order is reversed, the
values of the rotation angle and the direction of the c axis
will be changed as well. As expected, there are three
independent variables for a unitary optical system in
Eq. (31). Of the three parameters, x and G are indepen-
dent of the reference coordinate system. x is called
the characteristic angle, and G is the characteristic phase
of the unitary optical system.8 In this section we intro-
duce a new Stokes parameter method for the measure-
ment of these two characteristic parameters, using the
new 3 3 3 matrix introduced above.

Before we discuss the experimental techniques for de-
termining G and x, let us use this equivalence theorem to
reexamine the LP conditions derived in Section 3. Physi-
cally, the LP1 condition corresponds to the case in which
the equivalent retarder has a retardation of 2Np for in-
teger values of N. In this case the optical system be-
haves as a pure polarization rotator. This is known as
the integral wave-plate condition. The output polariza-
tion direction is simply given by g 5 f 1 a. For the
LP2 condition the rotation of the optical system is such
that the input polarizer is parallel to the c axis of the
equivalent wave plate. Thus the output is also linearly
polarized, with a direction g 5 f 2 a (for a twisted nem-
atic LC cell).19 Note again that the LP2 solution is al-
ways present, whereas the LP1 solution requires special
conditions on the optical system. If the optical system is
a LC cell, the LP1 solution is simply the waveguiding or
Gooch–Tarry mode of the LCD.21,22

To measure the values of G and x, consider the experi-
mental setup shown in Fig. 7. The input linearly polar-
ized light is kept in the horizontal direction by a horizon-
tal polarizer. Without loss of generality, we can assume
that the c axis of the equivalent wave plate is along the x
axis at the beginning of the experiment. If we rotate the
unitary optical system by an angle u, the output Stokes
vector will be represented by

S8 5 R~x! • R~u! • WP~G! • R~2u! • S. (32)

After some algebra, we get

S8 5 R~x! • S cos2 2u 1 sin2 2u cos 2G
sin 2u cos 2u~1 2 cos 2G!

sin 2G sin 2u
D 5 R~x! • S9.

(33)
Eliminating u from S19 and S29 of Eq. (33) gives

~S19 2 cos2 G!2 1 S29
2 5 sin4 G. (34)

Equation (34) is recognized to be the parametric equation
of a circle on the S1 –S2 plane with radius sin2 G and cen-
tered at (cos2 G, 0). This circle touches the Poincaré
sphere at position (1, 0), i.e., along the S1 axis. Now the
trajectory of S on the S1 –S2 plane is simply the projection
of the Stokes vector onto the S1 –S2 plane, so the projec-
tion of S8 on the S1 –S2 plane can be represented by the
same circle but rotated about the origin by an angle x.
We call this the characteristic circle of the optical system.
If one measures the Stokes parameters of the output light
in Fig. 7 by using the Stokesmeter as the optical system is
rotated, the result will be the characteristic circle. Fig-
ure 8 shows examples of this characteristic circle for some
optical systems (LC cells). Note that the radius of c1 for
the twisted nematic LC display is very small. This
makes sense since it is near the waveguiding Gooch–
Tarry mode of the LC display. Thus it is nearly a perfect
polarization rotator, with very small birefringence. The
c2 mode has a large radius because of the size of the
wavelength assumed.

From Eq. (34) it can be seen that the radius of the char-
acteristic circle is determined by phase G of the equivalent
wave plate. The center of this characteristic circle is off-
set from the x axis by an angle x. Therefore, by measur-
ing the azimuth and the radius of the characteristic circle,
one can determine the characteristic angle x and phase G;
the unitary optical system is thus defined uniquely.

In the above analysis, the unitary optical system is re-
quired to rotate during the measurement. However
sometimes it may be impossible for some system under
test to be rotated. In that case, the input polarizer
should be rotated instead. It is interesting to note that

Fig. 7. Experimental setup for the Stokes parameter method of
cell parameter measurement. S and S8 are the Stokes vectors
before and after the Gooch–Tarry nematic LC cell.

Fig. 8. Examples of characteristic circles on the S1 –S2 plane:
c1, first minimum twisted nematic cell (f 5 90°, dDn
5 0.5 mm); c2, second minimum twisted nematic cell (f 5 90°,

dDn 5 1.0 mm); c3, standard twisted nematic LC cell (f
5 240°, dDn 5 0.85 mm). Wavelength, 632.8 nm.
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in this case, the resulting Stokes vector draws an ellipse
rather than a circle on the S1 –S2 plane.

Then the S8 and S9 matrices are given by

S8 5 R~x! • F 1 0 0

0 cos 2G 2sin 2u

0 sin 2G cos 2G
G S cos 2u

sin 2u

0
D

5 R~x! • S9, (35)

where u represents the direction of the input polarizer
and the wave plate’s c axis is along the x axis. Thus we
have

S19 5 cos 2u,

S29 5 cos 2G sin 2u. (36)

Eliminating u from S19 and S29 in Eqs. (36) gives

SI9
2 1 S S29

cos 2G
D 2

5 1, (37)

which is the equation for an ellipse on the S1 –S2 plane
with ellipticity e 5 cos 2G. The center of the ellipse is at
(0, 0), and the major axis of this ellipse touches the Poin-
caré sphere at (1, 0). Similarly as for the characteristic
circle, the measured characteristic ellipse, given by S8, is
obtained from S9 by a rotation of the axes by an angle x.
Therefore, by measuring ellipticity e and offset angle x of
the characteristic ellipse, we can define the unitary opti-
cal system completely. Several examples of this charac-

Fig. 9. Characteristic ellipses for the same LC cells as in Fig. 8.
teristic ellipse are shown in Fig. 9. We can obtain the
characteristic angle x here by measuring the direction of
linear input polarization when the ellipse touches the
S1 –S2 circle. It is also interesting to note that ellipticity
e here can be proved to be identical to parameter K in
Eq. (8).

If the unitary optical system is a twisted nematic LC
cell, then twist angle f and retardation dDn can be deter-
mined by solution of the equations that relate f, dDn and
G, x. A summary of the results is given in Table 2. The
relationship between the unitary optical system param-
eters (a, b, c, d) and the characteristic parameters (x, G)
can be obtained, after some algebra, from Eq. (31). We
intend to publish details of the derivation of the equations
in Table 2 and also some experimental results subse-
quently.

6. CONCLUSIONS
In this paper we have given the formulation of a 3 3 3
matrix for calculation of the polarization state of light as
it traverses any number of unitary optical elements.
This formulation has the advantage that all the matrix el-
ements are real numbers. This point is quite important
in optical modeling calculations, as manipulation of com-
plex numbers will inevitably be more time consuming.
Both transmission between arbitrary polarizer directions
and reflection from a rear-mirror system have been con-
sidered in this paper.

We have shown that this 3 3 3 matrix is particularly
useful in deriving the conditions under which a linear po-
larization input results in a linear or circular polarization
output. Three useful conditions were presented, includ-
ing the LP1, LP2, and CP modes. The LP2 condition ex-
ists for all unitary optical systems. That is, for any loss-
less optical system, a linearly polarized input will always
produce a linearly polarized output, provided that the op-
tical system is oriented properly. This is true for any uni-
tary optical system, including a voltage biased or unbi-
ased twisted nematic liquid-crystal cell. This is an
interesting observation. It states that a general twisted
nematic LC cell can also produce a perfect linearly polar-
Table 2. Relationship of Characteristic Parameters of the Unitary Optical System to Various Matrix
Elements and to LC Cell Parameters

Characteristic
Parameter

Relationship to the Unitary
Optical System Relationship to the LC Cell

Angle x tan x 5 c/a tan x 5
b tan f 2 f tan b

b 1 f tan f tan b

Phase G cos2 G 5
K 1 1

2
sin2 G 5

d 2

b2 sin2 b

or cos2 G 5 ~a2 1 c2!

Radius R R 5 ~1 2 K!/2 R 5
d 2

b2 sin2 b

or R 5 1 2 ~a2 1 c2!

Ellipticity e e 5 K e 5 1 2
2d 2

b2 sin2 b

or e 5 2~a2 1 c2! 2 1
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ized output, under any applied voltage. This fact is im-
portant in the modeling and design of LC displays.

We also used the new 3 3 3 matrix to derive character-
ization methods of any unitary optical system. It was
shown that the Stokes vector will describe either a circle
or an ellipse on the equatorial plane of the Poincaré
sphere as the optical system or the direction of input po-
larization is rotated. The radius as well as the position
of the trajectory will give the retardation and the rota-
tional angle of the equivalent retarder and polarization
rotator of the optical system. All these results apply to
any unitary optical component, including twisted nematic
LC layers. This equivalence method is powerful for use
in determining the optical properties of any lossless opti-
cal system.
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